Clustering of point vortices in a periodic box

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Point Process Analysis of Vortices in a Periodic Box

The motion of assemblies of point vortices in a periodic parallelogram can be described by the complex position zj(t) whose time derivative is given by the sum of the complex velocities induced by other vortices and the solid rotation centered at zj . A numerical simulation up to 100 vortices in a square periodic box is performed with various initial conditions, including single and double rows...

متن کامل

Point Vortices in a Periodic Box Makoto Umeki

A statistical approach to a problem of assemblies of point vortices (PVs) goes back to Onsager (1949). A state of negative temperature is considered to be related to clustering of vortices rotating in the same direction and the inverse energy cascade predicted in the two-dimensional Navier-Stokes (2D NS) turbulence. In many numerical simulations, PVs are bounded in a circular wall, since a velo...

متن کامل

Clustering Analysis of Periodic Point Vortices with the L Function

A motion of point vortices with periodic boundary conditions is studied by using Weierstrass zeta functions. Scattering and recoupling of a vortex pair by a third vortex becomes remarkable when the vortex density is large. Clustering of vortices with various initial conditions is quantitated by the L function used in point process theory in spatial ecology. It is shown that clustering persists ...

متن کامل

Two Point Correlation Functions for a Periodic Box-Ball System

We investigate correlation functions in a periodic box-ball system. For the second and the third nearest neighbor correlation functions, we give explicit formulae obtained by combinatorial methods. A recursion formula for a specific N -point functions is also presented.

متن کامل

Nonergodicity of point vortices

The motion of N point vortices in a two-dimensional fluid is a Hamiltonian dynamical system with a 2N-dimensional phase space. The equations of motion for point vortices in a twodimensional square doubly periodic domain are derived from those for an open domain. The Hamiltonian has three known constants of the motion and is thus believed to be nonintegrable for four or more vortices. Trajectori...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: PAMM

سال: 2007

ISSN: 1617-7061,1617-7061

DOI: 10.1002/pamm.200700107